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Synopsis 

A high-frequency torsional rod apparatus (HFTRA) has been developed for measurements of 
moderately high-frequency viscoelastic properties of dilute, low viscosity polymer solutions. It 
employs a long cylindrically shaped resonating element driven by an X-cut (torsional mode) quartz 
piezoelectric crystal. Up to 11 different normal modes are employed, resulting in 11 discrete 
frequencies, ranging from approximately 20 to 500 kHz. Measurements are made in free decay; a 
key feature of the apparatus is the method for high precision measurements of damping coefficients 
and eigenfrequencies. The instrument is suitable for liquids with O.OO3P < Iv*1 < 5P and 
v’ 3 1.337j’. Qpically, 7’ has a relative uncertainty of ?2% or less, with the relative uncertainty 
for 4 being about 4% for liquids with # greater than O.OlP. Values of 7’ obtained in the HFTRA 
for low viscosity liquids with small g show excellent agreement with the known steady flow 
viscosities. Measurements of the viscoelastic properties of polymer solutions employing the 
HFTRA and two other instruments capable of higher precision measurements show excellent 
agreement, demonstrating that the HFTRA is sufficiently precise for dilute-solution viscoelasticity 
studies; the working frequency range is such that most of the polymer relaxation time spectrum can 
be probed for many polymer/solvent combinations. 

I. INTRODUCTION 

Extensive studies of the linear viscoelastic properties of polymer solutions have pro- 
vided considerable insight into the dynamics of conformational change in both the dilute 
and semidilute regimes [Ferry (1980)]. To investigate chain dynamics by means of linear 
viscoelastic properties, it is necessary to employ instrumentation operating at frequencies 
capable of probing at least a major fraction of the relaxation time spectrum of the poly- 
mer. Table I lists the longest and shortest relaxation times observed for a dilute solution 
of a narrow-distribution 860 000 MW polystyrene in a solvent which exhibits widely 
differing viscosities at different temperatures. Also listed are experimental time scales 
reported in terms of corresponding shearing frequency ranges necessary to probe the 
entire range of conformational dynamics exhibited by this particular polymer-solvent 
combination. In order to adequately explore the relaxation time spectrum of a polymer in 
a dilute solution via linear viscoelasticity, it is essential to obtain high precision measure- 
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TABLE I. Temperature dependence of the longest and shortest relaxation times observed for a 0.0040 g/cm3 
solution of 860 000 MW polystyrene in Aroclor 1248. 

Approximate 
solution 
viscosity 

P) 
Temp 
(“a 

Longest Shortest 
relaxation relaxation 

time= timeb 
(4 (4 

Instrumental 
frequency rangeC 

(Hz) 

0.7 45.00 1.4x10-3 3x10-7 
4 25.00 9x 10-3 2X 10-6 

350 2.80 0.75 2x 10-4 

1200 -1.40 3 6X 1O-4 
So00 -4.00 19 4x 10-3 

25 000 - 10.00 56 1 x10-2 

20 Hz-2 MHz 
4 Hz-300 kHz 

4X 1O-2-3OOO Hz 
1X1O-2-1OOO Hz 
2X1O-3-15O Hz 
6X 10-4-60 Hz 

‘Data of La&y [Landty (1985)]. 
bData of La&y and Sammler [Landry (1985); Sammler (1990)]. 
cInsuumental frequency range required to explore the entire relaxation time spectrum. 

ments; results are generally reported in terms of the real and imaginary parts of the 
complex shear modulus, G*(G* = G’ + iG” = 
cosity coefficient, 7j*(v* = v’-i# = ~~e-~+). 

GmefiG), or those of the complex vis- 

Instruments for high precision viscoelasticity measurements for dilute polymer solu- 
tions employ steady-state, very small strain, simple shearing flows. Commercial instru- 
ments employing cone-and-plate or parallel-plate geometries typically have an upper 
frequency limit of about 40-100 Hz (and generally do not have adequate precision), 
which is not nearly high enough to explore the entire relaxation time spectra for typical 
dilute polymer solutions, as is illustrated in Table I, unless a very high viscosity solvent 
is employed. Such a solvent usually requires a wide instrumental working temperature 
range and excellent (0.002 “C!) temperature control. Custom instrumentation, such as the 
modified Bimboim Apparatus (MBA), which employs the Segel-Pochettino or annular 
pumping geometries, has substantially broader frequency ranges; the MBA is useful from 
0.001 to 1000 Hz for moderate to high viscosity samples (I ~“1 2 5P). These instrumen- 
tal frequency range limitations can often be circumvented by employing time- 
temperature superposition [Ferry (1980)] f or solutions employing good solvents which 
exhibit a strong dependence of viscosity on temperature. However, this requires good 
solvent conditions at every temperature to avoid chain radius of gyration changes. By 
making measurements at several different temperatures, the relaxation time spectrum 
{ rp} of the polymer can be shifted in time without altering the relaxation time ratios 
{ T~/T~}. This approach has been used with the MBA to cover an effective frequency 
range of lop5 -lo6 Hz, which is sufficient to explore the entire relaxation time spectrum 
of the polymer solution of Table I. However, the need to employ time-temperature 
superposition imposes two significant restraints (noted above) upon the polymer-solvent 
systems that can be studied. First, the solvent must be a good solvent for the polymer at 
all measurement temperatures, and second, the solvent viscosity must be strongly tem- 
perature dependent. This greatly restricts the solvents that may be employed in such 
studies. Thus the relaxation time spectra of solutions in solvents such as water (most 
biological systems), toluene, dioctyl phthalate, or hexane could be explored only to a very 
limited extent. Thus, it is necessary to have instrumentation that is capable of both 
adequate recision and a large actual shearing frequency range, ideally extending up to 
about 10 ? Hz, in order to fully explore chain dynamics in polymer solutions employing 
such low viscosity solvents. 
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Several different instrumental strategies have been employed to measure linear vis- 
coelastic properties of solutions based on low viscosity solvents. What follows is a brief 
description of the major types of instruments developed to date. A more complete listing 
has been given by Ferry [Ferry (1980)]. 

An instrument operating in the low- to mid-audio frequency range was developed by 
Sittel, Rouse, and Bailey [Sittel (1954)] and later modified by Mellema [Blom (1984)]; it 
was based on a hollow torsional pendulum geometry and had an operating frequency 
range from 80 to 2500 Hz. The instrument of Sittel was operated in torsional free decay 
(TFD), and the eigenfrequency and damping coefficient were measured. Mellema im- 
proved the precision of this method by using forced oscillations. In both cases, a different 
pendulum was required for each frequency studied. 

The Multiple Lumped Resonator (MLR), first suggested by Bimboim [Ferry (1980)], 
was developed by Johnson and Schrag [Schrag (1972)] and later modified by the Amis 
group [Hair (1989)] and the Elgsaeter group [Ellingsrud (1992); Mikkelsen (1992)]. This 
instrument incorporates a resonator machined from a single piece of high-Q metal, which 
consists of five lumps connected by small diameter sections (springs) with different radii. 
This geometry creates five measurement frequencies (resonance modes), typically be- 
tween 100 and 8000 Hz; the MLR is capable of very high measurement precision, but the 
8ooO Hz maximum shearing frequency is far less than what is needed to explore the short 
time end of the relaxation time spectrum of the low viscosity solutions for which it is 
designed (]T*] < 0.3P). 

The use of a piezoelectric quartz tuning fork with wide, thin oscillating arms was 
pioneered by Mason [Mason (1947)] and has been employed by Yoshizaki [Yoshizaki 
(1993)]. For every frequency measured, a separate tuning fork is employed. The reported 
working frequency range is 0.5-10 kHz. 

Glover [Glover (1968); Glover (1969)] was the first to employ a thin hollow nickel 
tube transducer in which a traveling torsional wave packet induced by magnetostriction 
gave rise to cylindrical shear waves propagating in the surrounding liquid. The advantage 
of this instrument was that it was not restricted to specific frequencies, although the 
resultant measurement precision was poor. This basic design was improved on by Cooke 
and Matheson [Cooke (1976)], and later modified by Oosterbroek and Mellema [Ooster- 
broek (1980)] for use in a steady-state mode, which restricted measurements to discrete 
resonance frequencies (fundamental and five overtones), but substantially increased mea- 
surement precision. The demonstrated frequency range was 11-200 kHz. 

Cylindrical torsional mode piezoelectric crystals were first employed by Mason [Ma- 
son (1947)] for electrically nonconductive solutions. A different crystal was employed for 
each shearing frequency; the discrete frequency range covered was 20-100 kHz. This 
approach was improved upon by Tanaka and Sakanishi [Tanaka (1966)], who employed 
phase-sensitive detection to increase measurement precision. McSkimin attached a quartz 
buffer rod to the bottom of a quartz crystal, which gave rise to a set of additional 
lower-frequency modes, and enabled measurements on electrically conducting solutions 
[McSkimin (1952)]. The Wada group [Nakajima (1973); Nakajima (1970)] employed the 
torsional-free decay (TFD) method and a McSkimin-type resonator. This approach ex- 
tended the lower end of the working frequency range to 2 kHz (the working range of the 
instrument was 2-20 kHz); later, the Wada group extended the frequency range to higher 
frequencies (six frequencies between 2.2 and 525 kHz) [Ookubo (1976)]. 

The use an aluminum plate delay line in which a piezoelectrically generated ultrasonic 
transverse wave (Meitzler mode) was used to generate steady-state shear wave propaga- 
tion in the liquid sample was pioneered by the Meitzler group [Meeker (1964)] and 
modified by Hunston [Hunston (1969); Hunston (1972)]. A working frequency range of 
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l-7 MHz was achieved. The Birnboim group [Koh (1977)] further modified this tech- 
nique, employing fused quartz for the delay lines, which extended the frequency range to 
higher frequencies (3-30 MHz). 

For still higher frequencies, instruments have been developed in which piezoelectri- 
tally generated shear waves propagate through quartz, and are modified by reflection at 
an interface between the quartz and the viscoelastic liquid being studied. This method 
was initially employed by the Mason group [Mason (1949)] and had a frequency range of 
3-100 MHz. This scheme was modified extensively by Iamb and co-workers [Barlow 
(1959)], which resulted in a major expansion of the frequency range (40-1500 MHz). 

All the above instruments, with the exception of that of the Wada group, measure the 
motional differences of the resonator with and without contact with the viscoelastic 
liquid. An important advantage of the approach taken by the Wada group is that TFD 
measurements employing a long resonator geometry of the McSkimin type enable several 
measurements for each mode at different depths of immersion in the polymer solution, so 
that it is not necessary to make measurements with no sample present. More importantly, 
this measurement scheme greatly reduces the scatter in the measured properties. This 
approach is possible with most of the geometries listed above, with the exception of the 
plate delay line resonators and flat crystals, but it has not been employed because of 
complications introduced by solution surface wave effects. 

In the development of the high-frequency instrumental strategies outlined above, the 
advantage of a continuous frequency capability obtained when employing torsional trav- 
eling wave packets was offset by poorer measurement precision. On the other hand, 
measurements at resonance frequencies (steady-state or TFD methods) had the disadvan- 
tage of a restricted set of frequencies but had substantially enhanced measurement pre- 
cision. With the focus of the instrument described here being adequate precision for dilute 
solution studies, the TFD method has been employed. The apparatus is a variation on the 
Wada instrument; the major differences lie in the detection schemes. His scheme em- 
ployed analog electronics while our approach uses a combination of digital and analog 
methods to substantially improve the precision of the measurement. 

II. DESCRIPTION OF RESONATOR 

The type of resonator employed in this instrument was first described by McSkimin 
[McSkimin (1952)]; it is shown diagrammatically in Fig. 1. The cylindrically shaped 
resonator element is composed of an 0.500 cm diameter Homisil fused quartz rod 
(Heraeus-Amersil) 76.33320.002 cm in length, bonded to a 10.000~0.002 cm X-cut 
(torsional mode) quartz piezoelectric crystal with plated gold electrodes, manufactured by 
Valpey-Fisher, also 0.500 cm in diameter. The two pieces of the resonator are fastened 
together using Norland Optical Adhesive #61; a very thin glue layer is essential so that 
the mechanical impedance of the layer does not result in unwanted alterations of the 
standing wave patterns at high frequency. The electrical contacts to, and lateral stability 
for, the resonator are accomplished by four orthogonally placed phosphor-bronze elec- 
trodes, sharpened to a fine edge, contacting the vertical center of the piezoelectric crystal, 
as shown in Fig. 2. This vertical center corresponds to a node for all of the modes 
employed. A small (0.05 cm diam, 0.05 cm deep) conically shaped indentation in the 
center of the bottom of the quartz rod facilitates positioning of the resonator inside the 
housing. The resonator rests on a titanium support pin with a very sharp point to mini- 
mize the influence of this contact on the motion of the resonator. The vertical positioning 
of the resonator within the housing is accomplished by raising or lowering the support 
pin. A fine vertical positioning capability is essential: In practice, the electrodes must 
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FIG. 1. Schematic diagram of the resonator and housing for the high frequency torsional rod apparatus (not to 
scale). 

contact the resonator within 20.001 in. of its vertical center. If the contact point is in 
error by ?0.005 in., the resultant damping of the rod motion completely masks that 
caused by the sample solution. It is important to note that the length of the fused quartz 
buffer rod is not an integer multiple of the physical length of the piezoelectric crystal; the 
velocity of propagation of torsional shear waves is smaller in the fused quartz rod than in 
the piezoelectric crystal quartz driver element. To correct for this difference the fused 
quartz rod was shortened by 3.667 cm, so that the buffer rod would have an efective 
length (units of wavelength) that is an integer multiple of the length of the piezoelectric 

FIG. 2. Placement of the electrodes on the cylindricaJ torsional mode drive crystal (top and side view). 
Oppositely placed electrodes are electrically connected. 
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Mode 9 Mode 27 

FIG. 3. Visualization of the envelope of standing wave patterns of the resonator motion for the two lowest 
modes currently employed. The two ends of the rod and the junction between the torsional crystal and the buffer 
rod are antinodes, and the point of electrode contact is at a node. 

crystal. In order to obtain sufficiently large motional amplitudes to be readily detected, it 
is necessary to drive the resonator at a normal mode (resonance) frequency before the 
torsional-free decay process begins. For all normal modes, there is an antinode at each 
end of the resonator. In addition, there must be a node at the point of contact between the 
electrodes and the resonator to avoid excessive damping of the resonator due to these 
contacts, and there should also be an antinode at the glued junction between the two 
elements to minimize the influence of the glue layer. These constraints lead to eleven 
usable frequencies in the range 19 < f < 5 00 kHz for the resonator dimensions listed 
above. From these, usually eight are chosen that are approximately evenly spaced along 
a log frequency axis. The eight modes (frequencies) currently employed are modes 9 
(19 640 Hz), 27 (59 979 Hz), 45 (98 360 Hz), 63 (137 695 Hz), 81 (177 085 Hz), 117 
(255 857 Hz), 153 (334 693 Hz), and 208 (455 078 Hz). 

The spatially and temporally varying angular displacement of the resonator is gener- 
ated by the application to the electrodes of a sinusoidally time varying voltage of pre- 
cisely controlled (1 part in 109) frequency. This produces torsional plane shear waves that 
propagate up and down in the composite resonator, reflecting from its top and bottom, 
which results in standing wave patterns, as are depicted in Fig. 3 for the first two normal 
modes currently employed. 

The angular displacements of the resonator surface produce cylindrical shear waves 
propagating out radially in the surrounding medium. The working equations employed 
assume that these shear waves are effectively spatially attenuated to zero [“surface load- 
ing condition;” Ferry (1980)] before they encounter the glass sample cell wall (0.15 cm 
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gap between the resonator and the wall). A purely viscous sample (4’ = 0) would violate 
this condition for 1 T*[ > 12P; for a fairly elastic sample (7’ = 1.334’), this condition 
would be violated at Iv*1 > 7 P. This criterion is a major factor in determining the high 
viscosity limit for the instrument. 

While the resonator is being driven, only some of the applied electrical energy is 
translated into mechanical energy by the piezoelectric effect of the crystal, which com- 
plicates the analysis of steady-state measurements. For this reason, all measurements are 
taken when the resonator is in torsional free decay (TFD). 

To generate the free decay signal, the resonator is first driven at a normal mode 
(resonance) frequency long enough to develop a steady-state standing torsional shear 
wave in the resonator. Next, the drive electronics are turned off, and the subsequent 
torsional free decay of the driver motion is monitored by measuring the piezoelectrically 
generated voltage (VT) appearing at the phosphor-bronze electrodes, 

VT = v~ee(-‘/~~ 
M sln(o,,t+ 4, (1) 

where VL is the magnitude, w,, (radk) is the radian eigenfrequency for mode n, and l/r 
(s-l) is the damping factor. 

To obtain the viscoelastic properties of the solution, working equations relating A( l/r), 
A%, 1 and the solution 7” are necessary. The working equations employed are those of 
Wada [Nakajima (1973)], which were derived by employing a transmission line analogy. 
He obtained 

[(~‘~+f~)~‘~+rl’] (2) 

and 

Amen = - [(#+ p)K T/r] yjlD[2j[ l+& sin[yj] (3) 

for mode n, where r~‘, 7,r”, and p are the real and imaginary components of the complex 
viscosity coefficient for the solution and the density of the solution, respectively; w,~ is 
the eigenfrequency of the resonator; and po, a, 1, and h are the density, radius, length, 
and depth of immersion for the cylindrical resonator, respectively. There are two terms 
containing the dependence of A( l/r) and Aw,, on the depth of immersion: a linear term 
and a sinusoidal term that is mode dependent. The inverse mode number dependence of 
the sinusoidal term reduces its influence as n increases; in practice, the contribution from 
the sinusoidal term is smaller than experimental noise for mode numbers greater than 20. 

Equations (2) and (3) can be expressed in terms of an instrumental constant K and the 
real and imaginary terms of the characteristic impedance Zk,,, for plane shear waves 

(ZS,,,, = Rk,,,+ iXk,pJ: 

A(%), = KRs,,pl (4) 

Ai+, = -%,,I (5) 

where the Rh n, and Xh,,, are [S&rag (1971)] 
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FIG. 4. Plots of eigenfrequency and damping coefficient versus fluid height for 0.100 g/cm3 solution of 
polyisoprene in cis-decalin. (Error bars on the eigenfrequency reflect the 95% confidence interval.) Lines are 
best fit lines using Eq. (8) (line slopes and uncertainties are also listed). (a) Mode 9 (19 640 Hz). (b) The same 
plot for mode 153 (334 720 Hz). 

Ym,pl = - JG sin :-t = :[(7+‘+ $2)‘n-$] ( I( i 
l/2 

, (7) 

andKis 

Figure 4 illustrates the agreement between the predictions of Eqs. (4), (5), and (8) and 
experimental data. In Fig. 4(a), the solid lines represent a best fit to the data; the best fit 
constants rue essentially identical to those predicted from the measured physical dimen- 
sions of the resonator. The directly measured length of the composite resonator is 86.333 
cm (?0.002), which gives 1.5267 cm (+0.002%) for U(2n7r); the theoretical best fit to 
the experimental data gives 1.513 cm (50.7%). Figure 4(b) shows the fit for a higher 
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FIG. 5. Diagram of the HFTRA measurement scheme. The motion of the transducer is illustrated; only the free 
decay portion is sensed in the detection scheme. 

mode number; note that l/~and w,, show the linear dependence on fluid height seen for 
mode numbers greater than 20. 

The 7’ and 4’ are obtained by rearrangement of Eqs. (4) and (5). 

77’= %I p*xiI pl ’ ’ = - 2(Aw),,(A l/da 

UP %,pK2 
(9) 

(10) 

III. IMPLEMENTATION OF MEASUREMENT SCHEME 

In order to measure the viscoelastic properties of dilute polymer solutions with enough 
precision to extract the polymer contribution, high precision measurements of l/7 and 
o,, are essential. In practice, precisions of greater than 1 part in lo6 are required for both 
the frequency and damping factor measurements to determine the viscoelastic properties 
with a relative precision of 1%. 

An outline of the measurement scheme is shown in Fig. 5. First, the resonator is driven 
at a resonance frequency (w,,,) by applying a sinusoidally time varying voltage from a 
Hewlett-Packard model 3325A frequency synthesizer equipped with the hi 
MHz master clock option (frequency stability better than 1 part in 10 8 

h-stability 10 
for the time 

intervals involved). When the resonator has reached steady-state conditions, the drive 
signal is gated off by the master timing circuitry. The resonator motion in free decay 
(TFD) is subsequently followed by monitoring an amplified version of the free decay 
signal (VT) generated by the piezoelectric element. 
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To measure the eigenfrequency with the requisite precision requires the use of a very 
high-stability universal counter. High-stability counters generally employ special 10 MHz 
time bases: higher master clock frequencies are generally not sufficiently stable. Such 
counters operate in either the “frequency” or “period” mode, but adequate precision 
cannot be obtained for this application when the “frequency” mode is employed, since in 
this mode the master clock controls the input gate time and the counter counts the number 
of zero crossings of the incomin transducer signal during the gate interval. Thus, to 
obtain a precision of 1 part in 10 P , at least lo6 signal cycles must be counted during the 
interval. However, the TFD signal decays sufficiently rapidly that there are only about 
I O4 cycles before the signal-to-noise ratio approaches unity, making this mode unusable 
(typical viable measurement times range from 4 to 80 ms). In the “period” mode, the 
incoming TFD signal sets the gate time interval, and the counter counts the number of 
zero crossings of the 10 MHz master clock signal during the gate interval. The particular 
counter employed here, a Hewlett-Packard Model 5328A Universal Counter with the 
high-stability 10 MHz time base option, has another important feature. In the “period” 
mode, one can average over more than one period of the incoming waveform; typically, 
we average over ten cycles. However, even this flexibility will not provide the requisite 
precision. Consider, for example, the measurement precision obtained for a 100 kHz 
transducer signal (period = IO-’ s) in the period mode; averaging over ten cycles, the 
measurement precision would be 1 part in 103, a long way from the desired 1 part in 106. 

A heterodyning step is employed to overcome this problem; the transducer signal (VT) 
is fed into one channel of an Analog Devices Model 429B multiplier (10 MHz band- 
width). The other input to the multiplier circuit is a high-stability reference sine wave 
from a second HP3325A frequency synthesizer operating from the same high-stability 
clock as the drive synthesizer. The frequency of this “offset” signal, ~0. is set quite close 
to, but less than, the eigenfrequency of the TFD signal (typically 1000-4000 Hz lower), 
and has the form 

V, = PM sin( wut+ 7). 

The output of the multiplier (Vout = Vo X VT) has the form 

(11) 

V Out 
= Vg’e-(“7) 

[ 
sin(w,,+~u)r+~ +x +sin (w,,-0~o)r+t +x 

I i 11 
. (12) 

Note that frequency sum and difference terms appear, but the damping factor is un- 
changed. This output is fed to a Krohn-Hite Model 3202 low pass filter; by setting this 
sharp cutoff filter to transmit only the difference frequency, the filter output has the form 

V, = fMep(“d sin[(w,,-w&S 01. 

By heterodyning the signal, the precision in the “period” mode has been enhanced, since 
the gate time has been increased by of the order of 103, so that many more pulses from 
the master clock are counted. The precision of this measurement for a 1000 Hz difference 
signal is 1 part in 105 (a ten period average). Since the frequency “offset” signal is 
known to better than one part in 109, the actual transducer eigenfrequency (the sum of the 
“offset” and difference frequencies) can now be measured to better than one part in lo7 
for frequencies above 100 kHz (the last five modes) and one part in lo6 (the first three 
modes) for frequencies below 100 kHz. 

The heterodyning of the signal also enables the use of a unique method for determi- 
nation of the damping coefficient of the TFD signal, which was developed by Stokich; 
this ability to very precisely measure the damping coefficient is the most important aspect 
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FIG. 6. Outline of the scheme for precise measurement of the damping coefficient of the TFD signal. 

of this measurement scheme. The method is illustrated in Fig. 6 (the number of cycles for 
the VF signal reduced for clarity). The heterodyned TFD V,C signal is compared to a 
precise, exponentially decaying reference signal V,, generated by discharging a high- 
stability precision 0.1000 PF capacitor through a very low inductance precision decade 
resistance box. This reference signal has the form 

V, = rp,,-(“‘R). 

The outputs of the very fast comparator and a 10 MHz clock module are fed to the two 
inputs of digital gating circuitry that feeds a fast synchronous up/down counter; the 
comparator output state reflects whether VF > VR , or vice versa. Master control timing 
circuitry generate the two identical width gates GTl and GT2 (can be varied from 
6.2500X 10e7 to 0.10000 s). When GTl and the comparator outputs are both high, the 10 
MHz clock signal is fed to the “up” input of the up/down counter; when GTl is high but 
the comparator output is low, the 10 MHz signal is fed to the “down” counter input. 
When GT2 becomes high, the overall operation is reversed, so that when the comparator 
output is high, the 10 MHz signal is fed to the “down” counter input, and when the 
comparator output is low, the 10 MHz signal is fed to the “up” input. At the end of the 
data acquisition interval, td, the counter reading reflects the difference in the damping 
coefficients of VF and V,. The damping coefficient of V, is adjusted by varying the 
precision decade resistance box setting until V, and V, have the same damping coeffi- 
cient (counter reading is effectively zero). The limiting factors in the determination of the 
damping coefficient for V, are the resistance increments of a very low inductance decade 
resistance box (1 C! steps) and the noise level of VF . T, is averaged up to 2048 times; 
this is essential to reduce scatter resulting from comparator triggering noise. 

There is a small difference between the steady-state resonance frequency of the driven 
rod and the frequency it has in free decay, the eigenfrequency. Thus, the first several 
cycles of the decay signal are transitional, not at either of the two frequencies. To keep 
this from impacting measurements of the eigenfrequency or decay rate (small effect), a 
precision clock delay circuit is employed that delays the onset of measurement by finite 
time steps, ranging from 0.1 to 20 milliseconds. During the course of a data run the time 
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delay is adjusted so that the first several cycles [usually SO-400 cycles of the resonator 
signal (frequency w,,)] of the resonator in free decay are not employed in the eigenfre- 
quency and decay rate measurements. 

Temperature control is critical, due to the variation of the eigenfrequencies with tem- 
perature. A temperature variation of 0.05 “C produces eigenfrequency changes of as much 
as 10% of the eigenfrequency shift caused by the viscoelastic liquid, and thus a 10% error 
in 7’ and a much larger error in T”. Temperature control is provided by circulating water 
from a constant temperature bath through passages machined in the housing, as is illus- 
trated in Fig. 1. Additional temperature stability and the reduction of thermal gradients 
along the resonator arc gained by incorporating an outer chamber vacuum jacket as part 
of the housing. Temperature is measured by three Fenwal GB32P3 thermistors located 
114, l/2, and 314 of the way up the housing that extend into the bath fluid, and an 
additional thermistor placed within the bottom support pin. All thermistors have been 
calibrated against a standard platinum resistance thermometer calibrated at NIST. 
Changes of -CO.002 “C can be readily detected. The temperature can be maintained to 
within 50.005 “C for bath temperatures within k.5 “C of the ambient room temperature; 
there is no detectable temperature gradient within the cell. Note that a single data run may 
require up to 15 h. 

Measurements are made at several different depths of immersion; depth is controlled 
by incremental injections of the viscoelastic liquid into the bottom of the sample cell. It 
is essential to incrementally jfill the sample cell (successively increase the depth of im- 
mersion) rather than drain it. If the sample is incrementally drained out of the cell, the 
thin layer of liquid still coating the resonator strongly affects the eigenfrequency and 
damping coefficient, and also makes it impossible to accurately determine the effective 
depth of immersion. This effect persists until the rod is cleaned and dried. Such sensitiv- 
ity to the presence of a very thin layer of solution suggests that there might be problems 
when studying liquids with high vapor pressures; vapor deposition of a very thin layer of 
solvent on the nonimmersed part of the resonator could lead to erroneous results. (The 
system is essentially sealed to minimize the evaporative loss of sample and deposition of 
vapors originating from outside the apparatus; for sample liquids such as cyclohexane 
and toluene, no detectable changes in fluid height or resonance frequencies have been 
observed during a one hour interval.) The possibility of errors resulting from sample 
vapor adsorption was explored by monitoring the resonator behavior before and after 
introducing neat toluene, a relatively high vapor pressure liquid, below the bottom of the 
resonator, and comparing the resultant frequency and decay rate changes to those ob- 
served for neat toluene as a liquid sample. This comparison showed that the toluene vapor 
adsorbed on the nonimmersed resonator produced no measurable decay rate change, and 
a very small ( < 1 Hz, mode 117) shift in w,, ; this would correspond to a worst case 
error of two percent in the measured change in the eigenfrequency and thus less than one 
percent error in measured properties for toluene; since most solutions have substantially 
smaller vapor pressure, this is not expected to be a problem. Note that after immersion 
and drainage (a neat toluene sample), a time interval of at least 20 min was required to 
evaporate enough of the thin toluene film for the resonator behavior to approach that of 
the clean resonator. Introduction of the sample into the bottom of the cell is through the 
hollow support pin. The fluid height, h, is measured by reading the liquid meniscus 
position on a precise measuring tape attached to the outside of the sample cell; h is 
measurable to 50.01 cm. 

The HFTRA working equations [Eqs. (2) and (3)] strictly apply only for long resona- 
tors and h * 0, so that effects associated with the upper liquid surface and the lower end 
of the resonator are negligible. The lower outer edge and bottom surface of the resonator 
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FIG. 7. Plots of p’ vs frequency for a series of viscous liquids. Symbols are HFTRA data; the solid lines, 
known steady flow viscosities. 

give rise to a complex propagating shear wave field; however, this contribution is inde- 
pendent of h and thus is effectively eliminated by the measurement and analysis methods 
employed. However, for small h, deviations in plots of A( l/~)~ and ho,, vs h from the 
predicted behavior are seen (see Fig. 4). Data in this region are discarded. Surface waves 
and surface viscoelastic properties associated with the upper liquid surface are also po- 
tential complications. These surface contributions, if significant, will lead to variations in 
the h dependence, different from that given in Eq. (8); this difference would be detectable 
only for the lowest mode. (Note that it may be possible to determine such surface 
properties with this type of transducer by employing a different analysis procedure and 
keeping h small,) 

The measured eigenfrequency, damping coefficient, and fluid height are entered into a 
computer. For a given h, data is taken for each of the eight modes normally employed. 
Fluid height is then increased, and the entire process repeated for each of 15-20 fluid 
heights. Typical results are illustrated in Fig. 4 (115 000 MW polyisoprene in cis-decalin, 
C = 0.100 g/cm3, T = 25.00 “C). 

IV. EXPERIMENTAL RESULTS 

The first step in evaluating this instrument was to run a series of Newtonian liquids 
(# z 0) of known viscosity [Radtke (1986)]. The results for this series of liquids are 
presented in Fig. 7; only values for 7’ are shown. (The small d’ values obtained were 
randomly scattered about zero, as expected.) The lines are the reported values of the low 
shear rate, steady flow viscosity for these liquids, which compare very well with the 
values obtained here. 

Figure 8 compares the VE properties for solutions of 53 700 MW atactic polystyrene 
(MwlMn = 1.02) measured by three different instruments designed for dilute solution 
measurements. Two solutions were employed; Aroclor 1248 was the solvent for studies 
with the modified Bimboim apparatus (MBA), while Aroclor 1232 was used as the 
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FIG. 8. The plot of viscoelastic properties versus frequency for a narrow distribution polystyrene in Aroclors 
measured with three different instruments. MLR data: circles with pips; HFTRA data: circles; MBA data: solid 
lines representing data taken at several different temperatures and time-temperature superposed to 25.00 “C, 
then corrected for differences in concentration and solvent viscosity (see the text). 

solvent for measurements with the multiple lumped resonator (MLR) and high frequency 
torsional rod apparatus (HFTRA). (Previous studies in our group and others have shown 
that these two Aroclors exhibit nearly identical solvation conditions for polystyrene for 
temperatures near 25 “C.) The individual data points from the MLR (circles with pips) 
and HFTRA (circles) are shown; the solid lines represent the very large number of data 
points obtained with the MBA. Data for different temperatures obtained with the MBA 
were time/temperature superposed to 25.00 “C, the temperature employed for MLR and 
HFTRA measurements, and then shifted again to reflect the differences in solvent vis- 
cosity for Aroclor 1232 and Aroclor 1248 and a small difference in solution concentra- 
tions using the procedures of Landry [Landry (1985)] and Stokich [Stokich (1989)-j. The 
agreement among the three instruments is excellent, illustrating the ability of the HFTRA 
to obtain precise results for dilute polymer solutions. 

V. COMMENTS 

The HFlXA provides adequate precision and a working frequency range suitable for 
moderately high-frequency viscoelastic studies of dilute polymer solutions employing 
low viscosity solvents; the frequency range is such that most of the relaxation time 
spectrum can be probed for many polymer/solvent combinations. There are instruments 
with higher precision, such as the MLR, and instruments capable of operating at higher 
frequencies, but this appears to be the first instrument capable of operating at these 
frequencies with the precision requisite for measurements of 7,~’ and 7,” for dilute solu- 
tions. The use of a discrete set of frequencies is a limitation, but the present resonator 
provides reasonable coverage of the 20-500 kHz frequency range. The key feature of this 
apparatus is the method for precise measurements of the damping coefficient and eigen- 
frequency, particularly the former. The instrument is suitable for solutions for which 
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0.003P < Iv*1 < 5P if 7’ > 1.337”. The lower limit on I$ is set by inherent noise 
(electrical and mechanical), and the upper limit by the need to have surface loading 
conditions. Generally, 7’ has a relative uncertainty of 2% or less, with the 7” relative 
uncertainty being about 4% for solutions for which 7” is greater than O.OlP. 
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